AN EXAMPLE OF A REGULAR SPACE ON WHICH EVERY CONTINUOUS FUNCTION IS CONSTANT

A.A. Zaitov
Professor, Doktor of physics and mathematics, Teacher at Tashkent Institute of Engineers and Construction

D. R. Atamuradova

Teacher at Tashkent State Pedagogical University https://doi.org/10.5281/zenodo. 6502510
Abstract: This article gives examples of a regular space where each continuous function is constant.

Key words: regular space, continuous function, constant ПРИМЕР РЕГУЛЯРНОГО ПРОСТРАНСТВА, НА КОТОРОМ ЛЮБАЯ НЕПРЕРЫВНАЯ ФУНКЦИЯ ПОСТОЯННА
Аннотация: В этой статье приведены примеры регулярного пространства, где каждая непрерывная функиия постоянна.

Ключевые слова: регулярное пространство, непрерывная функция, константа.

Let X be an arbitrary infinite set of cardinality $\mathrm{mt} \geq \mathrm{N}_{0}, x_{0} \in X$ be some point. Let's define a family

$$
\tau=\left\{U \subset X: x_{0} \notin U\right\} \cup\{U:|X \backslash U|<\infty\} .
$$

It is easy to establish that (X, τ) is a topological space that is denoted by $A(\mathrm{mt})$. For every $x \in X \backslash\left\{x_{0}\right\}$ the single-point set $\{x\}$ is clopen, and the set $\left\{x_{0}\right\}$ is closed, but not open. At the same time, U is an open neighborhood of x_{0} if and only if U contains x_{0}, and it has a finite complement. A family consisting of all single-point sets $\{x\}, x \in X \backslash\left\{x_{0}\right\}$, and of all the sets U with a finite complement, form a base of the space (X, τ).

Closure of a subset $A \subset A(\mathrm{mt})=(X, \tau)$ (i. e. the set of all points $x \in X$, each open neighborhood of which intersects with A) in this case, is determined by equality

$$
\bar{A}=\left\{\begin{array}{cl}
A, & \text { if } \mathrm{A} \text { is finite, } \\
A \cup\left\{x_{0}\right\}, & \text { if } \mathrm{A} \text { is infinite. }
\end{array}\right.
$$

Indeed, if A is finite and $x \notin A$ and $x \neq x_{0}$ the set $\{x\}$ is an open neighborhood of x and $\{x\} \cap A=\emptyset$; if $x_{0} \notin A$, that set $U=X \backslash A$ is an open neighborhood of x_{0} и $U \cap A=\emptyset$. Thus, if A is finite, then every point of X, not included in A, has a neighborhood that does not intersect with A. So, $\bar{A}=A$.

If A is infinite and $x \notin A$, then in the case $x \neq x_{0}$ the set $\{x\}$ is an open neighborhood of x and $\{x\} \cap A=\emptyset$. This means that $x \notin \bar{A}$. Each neighborhood of a point x_{0} has the form $U=X \backslash F$, where F is finite set. Since A cannot be embedded into any finite set F by any way, then the sets U and A necessarily intersect. Hence, by definition of the closure, we have

$$
\bar{A}=A \cup\left\{x_{0}\right\} .
$$

It follows that:
$\left(C l_{1}\right)$ an infinite subset of the space $A(m)=(X, \tau)$ is closed if and only if it contains x_{0};
$\left(\mathrm{Cl}_{2}\right)$ an intersection of any two closed infinite subsets of the space $A(\mathrm{mt})=(X, \tau)$ is nonempty.

The point x of the topological space X is called an accumulation point (a limit point) of the set $A \subset X$, if $x \in \overline{A \backslash\{x\}}$, that is, each neighborhood $O x$ of a point x has at least one point y other than x belonging to the intersection:

$$
y \in A \cap O x
$$

Note that the point x_{0} is a unique accumulation point of the topological space $A(\mathrm{mt})=(X, \tau)$.

For a topological space $A(\mathrm{mt})=(X, \tau)$ interior Int A of a subset $A \subset X$ (i. e. the set of all points $x \in A$, each of which has an open neighborhood lying in A) is defined by the equality

Int $A= \begin{cases}A, & \text { if } X \backslash A \text { is finite, } \\ A \backslash\left\{x_{0}\right\}, & \text { if } X \backslash A \text { is infinite } .\end{cases}$
Indeed, if $X \backslash A$ is finite, then for each $x \in A, x \neq x_{0}$, its open neighborhood $\{x\}$ contained in A. If $x_{0} \in A$, then $U=X \backslash(X \backslash A)=A$ is an open neighborhood of x_{0} and $U \subset A$. So, in this case, $\operatorname{Int} A=A$.

Let now $X \backslash A$ be infinite. Then for each $x \in A, x \neq x_{0}$, its open neighborhood $\{x\}$ contains in A. But, each neighborhood $U=X \backslash F$ of x_{0}, where F is a finite set, does not contain in A. Therefore $x_{0} \notin \operatorname{Int} A$, i. e. $\operatorname{Int} A=A \backslash\left\{x_{0}\right\}$.

It follows that:
$\left(I n t_{1}\right)$ any two open subsets of the space $A(m)=(X, \tau)$ with a finite complement have a nonempty intersection;
$\left(I n t_{2}\right)$ a subset of the space $A(\mathrm{mt})=(X, \tau)$ with infinite complement is open if and only if it does not contain x_{0}.

Constancy sets of continuous functions on spaces of the type $\boldsymbol{A}(\mathrm{mi})$

For an arbitrary continuous function $\varphi: X \rightarrow \mathbb{R}$ and for every $i \in \mathbb{N}$ a set $\varphi^{-1}\left(\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)\right)$ is an open neighborhood of a point x_{0} (as a preimage of an open set $\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)$). Then the property $\left(\right.$ Int $\left._{2}\right)$ implies that the set $X_{i}=X \backslash \varphi^{-1}\left(\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)\right)$ cannot be infinite. Hence every X_{i} is finite, $i=1,2, \ldots$. Therefore $X_{0}=\underset{i \in \mathbb{N}}{ } X_{i}$ is no more than countably. Also, since $x_{0} \notin X_{i}$ for every $i=1,2, \ldots$, than $x_{0} \notin X_{0}$. For a point

$$
x \in X \backslash X_{0}=X \backslash \bigcup_{i \in \mathbb{N}} X_{i}=\bigcap_{i \in \mathbb{N}}\left(X \backslash X_{i}\right)=
$$

$$
\begin{gathered}
=\bigcap_{i \in \mathbb{N}}\left(\varphi^{-1}\left(\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)\right)\right)= \\
=\varphi^{-1}\left(\bigcap_{i \in \mathbb{N}}\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)\right)
\end{gathered}
$$

we have $\varphi(x) \in \bigcap_{i \in \mathbb{N}}\left(\varphi\left(x_{0}\right)-\frac{1}{i}, \varphi\left(x_{0}\right)+\frac{1}{i}\right)$. That is why $\varphi(x)=\varphi\left(x_{0}\right)$ for all $x \in X \backslash X_{0}$.

Thus, we establish the following properties. $\left(1_{0}\right)$ For an arbitrary continuous function $\varphi: X \rightarrow \mathbb{R}$ there is a set $X_{0} \subset X$ containing at most a countable number of points such that $x_{0} \notin X_{0}$ and $\varphi(x)=\varphi\left(x_{0}\right)$ at $x \in X \backslash X_{0}$.

Or, in another words:
$\left(2_{0}\right)$ For an arbitrary continuous function $\varphi: X \rightarrow \mathbb{R}$ a set X_{0} of all points $x \in X$ such that $\varphi(x) \neq \varphi\left(x_{0}\right)$, has no more than a countable number of points. At the same time, it is clear that $x_{0} \notin X_{0}$.

Let $X=A(\mathrm{mt}), \quad Y=A(\mathrm{rt})$, where $\mathrm{N}_{0}<\mathrm{mt}<\mathrm{r}$. Let x_{0} and y_{0} be accumulation points, respectively, of spaces X and Y. Let us put $Z=X \times Y \backslash\left\{\left(x_{0}, y_{0}\right)\right\}$.

For $x \in X \backslash\left\{x_{0}\right\}$ let us define a set

$$
Y_{0}(x)=\left\{y \in Y: f(x, y) \neq f\left(x, y_{0}\right)\right\} \subset Y \backslash\left\{y_{0}\right\}
$$

and put

$$
Y_{0}=\mathrm{U}_{x \in X \backslash\left\{x_{0}\right\}} Y_{0}(x)
$$

It is clear that $Y_{0} \subset Y \backslash\left\{y_{0}\right\}$.
For every $x \in X \backslash\left\{x_{0}\right\}$, and for every $y \in Y \backslash Y_{0}$ the following equality holds

$$
\begin{equation*}
f(x, y)=f\left(x, y_{0}\right) \tag{1}
\end{equation*}
$$

By virtue of the property $\left(2_{0}\right)$ for a subset

$$
Y_{0}(x) \cong\left\{(x, y) \in\{x\} \times Y: f(x, y) \neq f\left(x, y_{0}\right)\right\} \subset\{x\} \times Y
$$

we have $\left|Y_{0}(x)\right| \leq \mathrm{N}_{0}$. Therefore, $\left|Y_{0}\right| \leq \mathrm{mt}$.
Now, choose an arbitrary $\bar{y} \in Y \backslash\left(Y_{0} \cup\left\{y_{0}\right\}\right)$ and define a set

$$
\begin{equation*}
X_{0}=\left\{x \in X: f(x, \bar{y}) \neq f\left(x_{0}, \bar{y}\right)\right\} \subset X \backslash\left\{x_{0}\right\} . \tag{2}
\end{equation*}
$$

Again (2_{0}) implies that $\left|X_{0}\right| \leq K_{0}$.
Put

$$
Z_{0}=\left(X_{0} \times Y\right) \cup\left(X \times Y_{0}\right) .
$$

Let $r=f\left(x_{0}, \bar{y}\right)$. By virtue of (1) and (2), for any point $(x, y) \in Z \backslash Z_{0}$, such that $x \neq x_{0}$, we have

$$
f(x, y)_{(1)}^{=} f\left(x, y_{0}\right) \underset{(1)}{=} f(x, \bar{y}) \underset{(2)}{=} f\left(x_{0}, \bar{y}\right)=r \text {. }
$$

A set $\left(Z \backslash Z_{0}\right) \backslash\left(\left\{x_{0}\right\} \times\left(Y \backslash\left\{y_{0}\right\}\right)\right)$ is everywhere dense in a space $Z \backslash Z_{0}$. Consequently, from $\left(x_{0}, y\right) \in Z \backslash Z_{0}$ it follows that $f\left(x_{0}, y\right)=r$.

Thus, the following property is proved.
$\left(3_{0}\right)$ For each continuous function $f: Z \rightarrow \mathbb{R}$ there exists such a real number r, such sets $X_{0} \subset X \backslash\left\{x_{0}\right\}, Y_{0} \subset Y \backslash\left\{x_{0}\right\}$, with $\left|X_{0}\right| \leq \mathcal{K}_{0},\left|Y_{0}\right| \leq \mathfrak{m}$ and

$$
f(x, y)=r
$$

at $(x, y) \in Z \backslash Z_{0}$.
An example of a regular space on which every continuous function is constant Let $X=A(\mathrm{mt}), Y=A(\mathrm{r})$, where $\mathrm{N}_{0}<\mathrm{mt}<\mathrm{n}$. Let x_{0} and y_{0} be accumulation points, respectively, of the spaces X and Y. Let us put

$$
Z=X \times Y \backslash\left\{\left(x_{0}, y_{0}\right)\right\} .
$$

For each positive integer i we define sets

$$
Z_{i}=Z \times\{i\} \text { and } Z_{-i}=Z \times\{-i\} .
$$

Let

$$
Z^{* *}=\left(\oplus_{i=1}^{\infty} Z_{i}\right) \cup\left(\oplus_{i=1}^{\infty} Z_{-i}\right) .
$$

Take elements $z, z^{\prime} \notin Z^{* *}, z \neq z^{\prime}$, and we introduce a topology on the set $H^{*}=Z^{* *} \cup\left\{z, z^{\prime}\right\}$ using the neighborhood system $\{\mathcal{B}(x)\}_{x \in H^{*}}$, where for any $x \in Z^{* *}$ a collection $\mathcal{B}(x)$ is a family of all open subsets in $Z^{* *}$ containing x,

$$
\mathcal{B}(z)=\left\{U_{i}(z)\right\}_{i=1}^{\infty} \text {, where } U_{i}(z)=H^{*} \backslash\left(\oplus_{i=1}^{\infty} Z_{-i} \cup\left\{z^{\prime}\right\} \cup U_{j=1}^{i} Z_{j}\right)
$$

and

$$
\mathcal{B}\left(z^{\prime}\right)=\left\{U_{i}\left(z^{\prime}\right)\right\}_{i=1}^{\infty}, \text { where } U_{i}\left(z^{\prime}\right)=H^{*} \backslash\left(\oplus_{i=1}^{\infty} Z_{i} \cup\{z\} \cup U_{j=1}^{i} Z_{-j}\right) .
$$

The resulting space H^{*} is a completely regular space. It is clear that $Z^{* *}$ is a subspace of H^{*}. Let us define the equivalence relation R on H^{*}, the equivalence classes according to which have the form

$$
\left\{\left(x, y_{0},-i-1\right),\left(x, y_{0},-i\right),\left(x, y_{0}, i\right),\left(x, y_{0}, i+1\right)\right\} \text { for } x \in X \backslash\left\{x_{0}\right\} \text { and }
$$

odd i,

$$
\left\{\left(x_{0}, y,-i-1\right),\left(x_{0}, y,-i\right),\left(x_{0}, y, i\right),\left(x_{0}, y, i+1\right)\right\} \text { for } y \in X \backslash\left\{y_{0}\right\} \text { and }
$$ even i,

$\{(x, y, i)\}$ for $x \in X \backslash\left\{x_{0}\right\}, y \in X \backslash\left\{y_{0}\right\}$ and every i,
$\{z\}$ and $\left\{z^{\prime}\right\}$. Therefore, the quotient space $H=H^{*} / R$ is obtained by identifying the corresponding points in $A \times\{i\}, A \times\{i+1\}, A \times\{-i\}$ and $A \times\{-i-1\}$ for each odd i and identifying the corresponding points in $B \times\{i\}$, $B \times\{i+1\}, B \times\{-i\}$ and $B \times\{-i-1\}$ for each even i. Here as above

$$
\begin{aligned}
& A=\left\{\left(x, y_{0}\right): x \in X \backslash\left\{x_{0}\right\}\right\} \subset Z, \\
& B=\left\{\left(x_{0}, y\right): y \in Y \backslash\left\{y_{0}\right\}\right\} \subset Z .
\end{aligned}
$$

It is clear that

$$
\begin{gathered}
z, z^{\prime} \notin A \times\{i\} \text { and } z, z^{\prime} \notin A \times\{-i\} \text { for every odd } i, \\
z, z^{\prime} \notin B \times\{i\} \text { and } z, z^{\prime} \notin B \times\{-i\} \text { for every even } i .
\end{gathered}
$$

Full preimages of points under natural mapping $q: H^{*} \rightarrow H$ are one-point or four-point sets. Therefore, each point of the space H (that is, each equivalence
class) forms a closed set, which means the space H is a T_{1}-space. Moreover, the space H is a T_{3}-space. Consequently, the space H is regular.

Take points $t=q(z), t^{\prime}=q\left(z^{\prime}\right)$ and closed sets $F=q(A \times\{1\})$ and $F^{\prime}=q(A \times\{-1\})$. By the construction of the equivalent relation R, we have $F^{\prime}=F$. It is clear that $t \notin F$ and $t^{\prime} \notin F$. Now it remains to note that for each continuous function $f: T \rightarrow[0,1]$, such that $f(F)=\{r\}$ it occurs $f(t)=f\left(t^{\prime}\right)=r$.

Now let S be an arbitrary regular space and H be the above defined space. We provide the product $Y=S \times H$ with the topology generated with the topology of neighborhoods:
of the view $O(s, h)=\{s\} \times V$ for points $(s, h) \in S \times H, h \neq t$, where $V \subset H \backslash\{t\}$ are all possible open sets such that $h \in V$;
of the view $O(s, t)=\underset{s^{\prime} \in U}{U}\left(\left\{s^{\prime}\right\} \times V_{s^{\prime}}\right)$ for point $(s, t) \in S \times H$, where U is a neighborhood of the point s in the space S, a $V_{s^{\prime}}$ is a neighborhood of the point t in the space H.

Since S is closed in S and $\left\{t^{\prime}\right\}$ is closed in H, the set $S \times\left\{t^{\prime}\right\}$ is closed in the space $Y=S \times H$. We identify $S \times\left\{t^{\prime}\right\}$ of the space Y to a point. Then every continuous function $f: H(S) \rightarrow R$ is constant on a regular space S.

Referenses

1. H. Herrlich. Wenn sind alle statigen Abbildungen in Y konstant. Math. Zeitschr. 90(1965), P. 152-154.
2. Фоменко А.T. Наглядная Геометрия и Топология, Математические образы в реальном мир. - М.:МГУ, 1998 - с. 284.
3. 5) Атамуродова.Д, Мадраемова А. Топологик фазо базаси. //Илм Сарчашмалари, 2021 йил, № 9, 22-24 б.
1. Zaitov A. A. Geometriya. Chirchiq davlat pedagogika instituti elektron platformasi.
2. Д.Р.Атамурадова. Рекомендации по самостоятельному изучению темы «Топологические пространства. Открытые и замкнутые множества». //Научный вестник Ташкентского государственного педагогического университета. 2020, № 12, стр. 271-274.
